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Thenonlinearflutter and thermal buckling of an functionally gradientmaterial panel under the combined effect of

elevated temperature conditions and aerodynamic loading is studied. A nonlinear finite element model based on the

first-order shear deformable plate theory and von Kármán strain-displacement relations is adopted. The governing

nonlinear equations are obtained using the principal of virtual work, adopting an approach based on the thermal

strain being a cumulative physical quantity to account for temperature-dependent material properties. The

aerodynamic pressure ismodeled using the quasi-steadyfirst-order piston theory. This systemof nonlinear equations

is solvedby theNewton–Raphsonnumerical technique. It is found that the temperature increase has an adverse effect

on the functionally gradient material panel flutter characteristics through decreasing the critical dynamic pressure.

Decreasing the volume fraction enhances flutter characteristics, but this is limited by structural integrity aspect. The

presence of aerodynamic flow results in postponing the buckling temperature and in suppressing the postbuckling

deflection, and the temperature increase gives way for higher limit-cycle amplitude.

Introduction

T HE external skin of high-speed flight vehicles experiences high
temperature rise due to aerodynamic heating, which can induce

thermal buckling and dynamic instability. In general, thermal
buckling does not indicate structural failure. However, the thermal
large deflections of the skin panels can change its aerodynamic
shape, causing reduction in the flight performance.

A comprehensive literature review on thermally induced flexure,
buckling, and vibration of plates and shells was presented by
Tauchart [1] and Thornton [2]. Gray and Mei [3] investigated the
thermal postbuckling behavior and free vibrations of thermally
buckled composite plates using the finite element method. Shi and
Mei [4] solved the problem of thermal postbuckling of composite
plates with initial imperfections using the finite element modal
method. The modal participation values of linear postbuckling
modes was defined and used to determine the minimum number of
modes needed for convergence. The equations of motion were
derived using the principal of virtual work. The temperature change
over the plate is considered to be a large steady-state temperature
change over the plate �T�x; y�. Jones and Mazumdar [5]
investigated the linear and nonlinear dynamic behavior of plates at
elevated temperatures. They presented analytical solutions for the
thermal buckling and postbuckling behavior of a plate strip. A
general formula is also presented that links the fundamental

frequency of vibration to the critical buckling temperature and the
corresponding frequency of the unheated plate. Shi et al. [6]
investigated the thermal postbuckling behavior of symmetrically
laminated and antisymmetric angle-ply laminated composite plates
and the deflection of asymmetrically laminated composite plates
under mechanical and thermal loads. A finite element formulation in
modal coordinates was developed for the nonlinear thermal
postbuckling of thin composite plates. The quantitative contribution
of each linear buckling mode shape to the postbuckling deflection
was shown.

Panel flutter is a phenomenon that is usually accompanied by
temperature elevation on the outer skin of high-speed air vehicles.
Panel flutter is a self-excited oscillation of a plate or shell in
supersonic flow. Because of aerodynamic pressure forces on the
panel, two eigenmodes of the structure merge and lead to this
dynamic instability. Supersonic flutter of plates and shells was
recognized to be an important aspect of the design of high-speed
vehicles when Jordan [7] observed that a number of the early V-2
rocket failures were due to panel flutter. Since then, extensive
analytical and experimental research on that subject has been
performed. A common remedy to the flutter problem is to stiffen
those panels in danger of flutter, a method that usually introduces
additional weight to the design. Thin plates are a commonly used
form of structural components, especially in aerospace vehicles such
as high-speed aircraft, rockets, and spacecrafts, which are subjected
to thermal loads due to aerodynamic and/or solar radiation heating.
This results in a temperature distribution over the surface and
thermal gradient through the thickness of the plate. The presence of
these thermal fields results in a flutter motion at lower dynamic
pressure or a larger limit-cycle amplitude at the same dynamic
pressure. Accordingly, it is important to consider the interactive
effect of both aforementioned failure characteristics (flutter and
thermal buckling).

A vast amount of literature exists on panel flutter using different
aerodynamic theories to model the aerodynamic pressure and
different structure models [8–16].

Extensive researchwork has been carried out on the FGM since its
concept was proposed in the late 1980s in Japan. FGMs are
nonhomogeneous composites characterized by a smooth and
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continuous change of material properties from one surface to the
other. This is achieved by gradually varying the volume fraction of
the constituent materials. One of the advantages of using these
materials is that they can survive environments with high
temperature gradients while maintaining structural integrity.
Functionally graded materials are usually composed of two or more
materials for which the volume fractions are changing smoothly and
continuously along the desired direction(s). This continuous change
in the compositions leads to a smooth change in the mechanical
properties, which has many advantages over the laminated
composites, for which the delamination and cracks are most likely to
initiate at the interfaces, due to the abrupt variation in the mechanical
properties between laminas [17].

Dai et al. [17] presented a mesh-free model for the active shape
control and the dynamic response suppression of a functionally
graded material plate containing piezoelectric sensors and actuators.
Birman [18] studied the stability of functionally graded shape
memory alloy hybrid sandwich panels under the simultaneous action
of in-plane compressive and thermal loadings. Functional grading
was achieved by a nonuniform distribution of shape memory alloy
fibers in the middle plane (sinusoidal distribution). El-Abbasi and
Meguid [19] presented a new thick-shallow-shell element to study
the thermoelastic behavior of functionally graded structures made
from shells and plates. The element accounts for the varying elastic
and thermal properties across its thickness. Reddy [20] presented
theoretical formulation, Navier’s solutions of rectangular plates, and
a finite element model based on the third-order shear deformation
plate theory for the analysis of through-the-thickness functionally
graded plates. The formulation accounts for the thermomechanical
coupling, time dependency, and von-Kármán-type geometric
nonlinearity.

He et al. [21] presented a finite element formulation based on the
classical laminated plate theory for the shape and vibration control of
functionally graded material plates with integrated piezoelectric
sensors and actuators. A constant velocity feedback control
algorithm was used for the active control of the dynamic response of
the FGMplate through closed-loop control. Javaheri and Eslami [22]
derived the equilibrium and stability equations of a rectangular plate
made of a functionally gradedmaterial under thermal loads, adopting
the higher-order shear deformation plate theory. A buckling analysis
of a functionally graded plate under four types of thermal loads was
carried out, and a closed-form solution for the prediction of the
buckling temperature for rectangular simply supported FGM plates
was obtained.Woo et al. [23] developed an analytical solution for the
postbuckling behavior of plates and shallow cylindrical shells made
of functionally graded materials under the simultaneous action of
compressive in-plane loads and a temperature field. The solution is
obtained in terms of a mixed Fourier series.

Yang et al. [24] investigated the geometrically nonlinear bending
behavior of functionally graded plates with integrated piezoelectric
layers and subjected to transverse loads and a temperature gradient
through the plate thickness. Reddy’s [20] higher-order shear
deformation plate theory was adopted. Zenkour [25] studied the
static response for a simply supported functionally graded
rectangular plate subjected to a transverse uniform load using a
generalized shear deformation theory. The effects of transverse shear
deformation, plate aspect ratio, side-to-thickness ratio, and volume
fraction distributions were presented. It was found from the analysis
that the response of an FGM plate is intermediate to that of the
ceramic and metal homogeneous plates.

Kim [26] developed an analytical technique to investigate the
effect of temperature on the vibration characteristics of thick
functionally graded rectangular plates, taking into account the
temperature dependence of thematerial properties. Batra and Jin [27]
adopted the first-order shear deformation theory (FSDT) coupled
with finite element method to study the vibration of functionally
graded anisotropic rectangular plates with different edge-support
conditions. The grading there was achieved through continuously
changing the fiber orientation angle through the thickness. Qian and
Batra [28] adopted the meshless local Petrov– Galerkin method and
the compatible higher-order shear and normal deformation plate

theory to a thick, two-constituent, functionally graded cantilever
plate. The volume fractions of the constituents were assumed to vary
in the x and y directions. The spatial volume fractions of the
constituents are optimized to maximize either the first or the second
natural frequency of the plate. Parkash and Ganapathi [29] adopted
the finite element method to investigate the supersonic flutter
behavior of flat panels made of functionally graded material under
the influence of thermal environment. Temperature-dependent
material properties were only assumed when calculating material
properties through the thickness, but not when increasing the
temperature to reach buckling. Typically, the FGMs are made of a
mixture of two materials: a ceramic that is capable of withstanding
high-temperature environments, due to its low thermal conductivity,
and a metal that acts as a structural element to support loading and
prevent fractures. Without losing generality, it is usually assumed
that the top surface of an FGM plate is ceramic-rich and that the
bottom surface is metal-rich. The region between the two surfaces
consists of a blend of the twomaterials, which is assumed in the form
of a simple power law distribution as [17]

Pe�z� � PCVC � PM�1 � VC� (1)

VC �
�
0:5� z

h

�
n

; ��h=2 � z � h=2; 0 � n � 1� (2)

where z is coordinate in the thickness direction of a plate;Pe,PC, and
PM are effectivematerial properties of the FGM, the properties of the
ceramic, and the properties of the metal, respectively; Vc is the
ceramic volume fraction; h is the plate thickness; and power n is the
volume fraction exponent. Figure 1 shows the variation of the
volume fraction function versus nondimensional thickness with
different volume fraction exponents n. Functional grading could be
also achieved through smoothly changing the fiber orientation of a
composite laminate through the plate thickness or through a
nonuniform distribution of the fibers in the plane of the plate [18]. In
this work, the nonlinear flutter and thermal postbuckling behavior of
a ceramic-metal functionally graded plate under thermal and
aerodynamic loadings is studied using nonlinear finite element
method. The nonlinear governing equations for a thick, rectangular,
functionally graded plate are obtained using the principle of virtual
work and the von Kármán strain-displacement relation. The
approach is based on thermal strain being a cumulative physical
quantity, whereas the stress is an instant quantity. Thus, the thermal
strain is an integral quantity of thermal expansion coefficient with
respect to temperature, whereas stress is evaluated with the instant
elastic modulus at certain temperatures in the thermoelastic stress–
strain relations [30]. Therefore, the method does not need the many
small increments as in the incremental method [31], and it is suitable
for any nonlinear temperature-dependent material properties.
Numerical results are provided to show the effects of thermal field,

Fig. 1 Variation of the ceramic volume fraction function versus the
nondimensional thickness z=h.
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material properties, volume fraction exponent, and boundary
conditions on the postbuckling, fundamental frequency, critical
dynamic pressure, and limit-cycle amplitude of a functionally graded
rectangular plate. To the authors’ knowledge, this is the first time that
the shear deformable plate theory has been applied with the
cumulative thermal strain concept in the thermal buckling and
nonlinear flutter of FGM plates.

Finite Element Formulation of Thermal
Postbuckling of FGM Panels

The equations of motion with the consideration of moderately
large deflection and temperature-dependent material properties are
derived for a functionally graded plate subject to aerodynamic and
thermal loadings. To account for temperature dependence ofmaterial
properties, a cumulative thermal strain is adopted for the calculation
of the thermal deflection and stresses in the plate. The element used in
this study is the rectangular, nine-node, C0, nonconforming element
(for the bending DOF).

Displacement/Nodal-Displacement Relation

The degree-of-freedom vector of the rectangular plate element can
be written

f�g � f�w�; ��x; �y�; �u; v�g �

8<
:
fwbg
fw�g
fwmg

9=
; (3)

wherew is the transverse displacement; �x and �y are the rotations of
the transverse normal about the x and y axes, respectively; u and v are
the membrane displacements in the x and y directions, respectively;
fwbg is the nodal transverse displacement vector; fwfg is the nodal
rotation of the transverse normal vector; and fwmg is the nodal
membrane displacements vector.

The displacement/nodal-displacement relation can be presented in
terms of interpolation function matrices �Nw�, �N�x�, �N�y�, �Nu�, and
�Nv� as

w� �Nw�fwbg; �x � �N�x �fw�g; �y � �N�y �fW�g

u� �Nu�fWmg; v� �Nv�fWmg
(4)

Nonlinear Strain-Displacement Relation

The in-plane strains and curvatures, based on the von Kármán
moderately large deflection and first-order shear deformable plate
theory, are given by

8<
:
"x
"y
�xy

9=
;�

8><
>:

@u
@x
@v
@y

@u
@y
� @v

@x

9>=
>;�

8>>>>><
>>>>>:
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�
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�
2
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2

�
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@y

�
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9>>>>>=
>>>>>;
� z

8>><
>>:

@�y
@x
@�x
@y

@�y
@y
� @�x

@x

9>>=
>>; (5)

or, in compact form,

f"g � f"ling � f"�g � zf�g (6)

where parameters u, v, and w are displacements in the x, y, and z
directions, respectively; and f"ling, f"�g, and zf�g are the membrane
linear strain vector, the membrane nonlinear strain vector, and the
bending strain vector, respectively.

The transverse shear strain vector can be expressed as

�
�yz
�xz

�
�
�
�x
�y

�
�
(
@w
@y
@w
@x

)
(7)

Stress–Strain Relationship of an FGM Panel

The stress–strain relations for the FSDT can be expressed as
follows [32]:

f�g �

8<
:
�x
�y
�xy

9=
;� �Q�z; T; n��f"g � �Q�z; T; n��

Z
T

Tref

f��z; �; n�g d�

(8)

f�g �
�
�yz
�xz

�
� Q44�z; T; n� Q45�z; T; n�

Q45�z; T; n� Q55�z; T; n�

� ��
�yz
�xz

�
(9)

where f�g and f�g are the in-plane stress vector and the transverse
shear vector, respectively; and f��z; T; n�g and [Q�z; T; n�] are the
thermal expansion coefficient vector and the stiffness matrix of the
FGM plate, respectively.

Integrating Eqs. (8) and (9) over the plate thickness, the
constitutive equation can be obtained as [30]�

fNg
fMg

�
� �A� �B�
�B� �D�

� ��
f"mg
f�g

�
�
�
fNTg
fMTg

�
(10)

fRg �
�
Ryz
Rxz

�
� A44 A45

A45 A55

� ��
�yz
�xz

�
� �A�sf�g (11)

where

f"mg � f"ling � f"�g

��A�; �B�; �D�� �
Z
h=2

�h=2
�1; Z; Z2��Q�Z; T; n�� dZ

�As� �
Z
h=2

�h=2
�Qs�Z; T; n�� dZ

�Q�z; T; n�� �

E�z;T;n�
1�	2�z;n�

	�z;n�E�z;T;n�
1�	2�z;n� 0

	�z;n�E�z;T;n�
1�	2�z;n�

E�z;T;n�
1�	2�z;n� 0

0 0 E�z;T;n�
2�1�	�z;n��

2
64

3
75

�Qs�z; T; n�� �
E�z;T;n�

2�1�	�z;n�� 0

0 E�z;T;n�
2�1�	�z;n��

" #

�fNTg; fMTg� �
Z
h=2

�h=2

�
Q�z; T; n�

�Z
T

Tref

f��z; �; n�g d�
��
�1; z� dz

where �A�, �A�s, �B�, and �D� are the laminate stiffness matrices,
respectively; fNg, fMg, and fRg are the resultant vectors of the in-
plane force, moment, and transverse shear forces; fNTg and fMTg are
the in-plane thermal load and thermal bendingmoment, respectively;
T denotes the temperature rise; and a constant temperature
distribution in the x, y, and z directions is assumed.

Aerodynamic Loading

The first-order quasi-steady piston theory for supersonic flow
states that [31]

Pa ��
�
ga
!o

D11

a4
@w

@t
� 
D11

a3
@w

@x

�
(12)

with

q� �a	
2

2
; ��

�����������������
M2
1 � 1

p
; !o �

�
D11

�ha4

�1
2

ga �
�a	�M2

1 � 2�
�h!o�

3
and 
� 2qa3

�D11

wherePa is the aerodynamic loading; 	 is the velocity of airflow;M1
is the Mach number; q is the dynamic pressure; �a is the air mass
density; ga is nondimensional aerodynamic damping; 
 is

1612 IBRAHIM, TAWFIK, AND AL-AJMI



nondimensional aerodynamic pressure; D11 is the first entry of the
flexural stiffnessmatrixD�1; 1�, which depends on bothT andn; and
a is the panel length in the flow direction.

Governing Equations

By using the principle of virtual work and Eqs. (6), (7), (10), and
(11), the governing equation of thermal postbuckling and nonlinear
flutter of a functionally graded material plate can be derived as
follows:

�W � �Wint � �Wext � 0 (13)

The internal virtual work �Wint is given as [33]

�Wint �
Z
A

�f�"mgTfNg � f��gTfMg � �f��gTfRg� dA

� f�wgT��K� � �KT � � 1
2
�N1� � 1

3
�N2��fwg � f�wgT�fPTg�

(14)

where fwg � �w �x �y u v� is the nodal-displacement vector; �K�
and �KT � are the linear stiffness matrix and the thermal geometric
stiffness matrix; �N1� and �N2� are the first- and second-order
nonlinear stiffness matrices, respectively; � is a shear correction
factor; and fPTg is the thermal load vector.

On the other hand, the external virtual work �Wext is given as [33]

�Wext �
Z
A

�Io�f�ugTf �ug � f�vgTf �vg � f�wgTf �wg�
�I2�f��xgTf ��xg � f��ygTf ��yg� � f�wgTPa

� �
dA

��f�wgT �M�f �wg � f�wbgT �G�f _wbg � f�wbgT
�Aa�fwbg
(15)

where

�Io; I2� �
Z
h=2

�h=2
��z��1; z2� dz

where h denotes the plate thickness, �M� is the mass matrix, �G� is the
aerodynamic damping matrix, and �Aa� is the aerodynamic influence
matrix.

By substituting Eqs. (14) and (15) into Eq. (13), the governing
equations for a functionally graded material plate under the
combined action of aerodynamic and thermal loads can be obtained
as

�Mb� 0 0

0 �M�� 0

0 0 �Mm�

2
64

3
75
8><
>:
f �Wbg
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f �Wmg

9>=
>;�
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0 0 0
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2
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3
75
8><
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f _Wmg
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>;
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0 0 0
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BBBBBBBBBB@
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8><
>:
fWbg
fW�g
fWmg

9>=
>;�

8><
>:

0

fP�Tg
fPmTg

9>=
>; (16)

or, simply,

�M�f �Wg � �G�f _Wg � ��K� � �KT � � 
�Aa� � 1
2
�N1�

� 1
3
�N2��fWg � fPTg (17)

Solution Procedures

The solution of the governing equation (17) is assumed to be as
follows:

fWg � fWsg � fWtg (18)

where fWsg is the time-independent particular solution,whichmeans
the large thermal deflection, and fWtg is the time-dependent
homogenous solution.

Substituting Eq. (18) into the governing equation (17),

�M�f �Wtg � �G�f _Wtg � ��K� � �KT � � 
�Aa���fWsg � fWtg�
� 1

2
��N1�s � �N1�t��fWsg � fWtg� � 1

3
��N2�s � �N2�t

� 2�N2�st��fWsg � fWtg� � fPTg (19)

Equation (19) represents the general equation for the thermal
buckling and nonlinear flutter of a functionally graded material plate
under the combined effect of aerodynamic and thermal loads. The
subscripts s and t indicate that the relevant matrix depends on the
static or dynamic displacements, respectively.

Separating the static and dynamic terms of Eq. (19), the following
two equations can be obtained :

��K� � �KT � � 
�Aa� � 1
2
�N1�s � 1

3
�N2�s�fWsg � fPTg (20)

�M�f �Wtg � �G�f _Wtg � ��K� � �KT � � 
�Aa� � 1
2
�N1�t

� 1
3
�N2�t�fWtg � ��N1�s � �N2�st � �N2�s�fWtg � 0 (21)

Static Aerothermal Buckling

The solution procedure using the Newton–Raphson method for
the aerothermal postbuckling analysis of a functionally graded
material plate is presented as follows.

Introducing the function f��W�g to Eq. (20),

f��Ws�g � ��K� � �KT � � 
�Aa� � 1
2
�N1�s

� 1
3
�N2�s�fWsg � fPTg � 0 (22)

Equation (22) can be written in the form of a truncated Taylor series
expansion as

f��Ws � �W�g � f��Ws�g �
df��Ws�g
d�Ws�

f�Wg 
 0 (23)

where

df��Ws�g
d�Ws�

� ��K� � �KT � � 
�Aa� � �N1�s � �N2�s� � �Ktan� (24)

Thus, the Newton–Raphson iteration procedure for the
determination of the postbuckling deflection can be expressed as
follows:

f��Ws�gi�
�
�K���KT ��
�Aa��1

2
��N1�s�i�1

3
��N2�s�i

�
fWsg�fPTg

�Ktan�if�Wgi�1��f��Ws�gi f�Wgi�1���Ktan��1f��Ws�gi
fWsgi�1�fWsgi�f�Wgi�1

Convergence occurs in the preceding procedure when the
maximum value of f�Wgi�1 becomes less than a given tolerance "tol
(i.e., max jfWgi�1j"tol).

Free Vibration

From Eq. (21), the equation of free vibration about a statically
stable position could be stated as

�M�f �Wtg � ��K� � �KT � � 
�Aa� � �N1�s � �N2�s�fWtg � 0 (25)
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This could be written as

�M�f �Wtg � �Ktan�fWtg � 0 (26)

Assuming the solution of the preceding differential equation to take
the following form,

fWtg � �cf�ge�t (27)

the generalized eigenvalue problem could be stated as

��2�M� � �Ktan��f�g � 0 (28)

Thus, the solution procedure would be, first, the solution of the
static thermal deflection and the associated stiffness matrices by
following the procedure outlined in the preceding section, and then,
solving the eigenvalue problem of Eq. (28) for the free vibration of a
thermally buckled functionally graded material plate.

Panel Flutter Under Thermal Effect

In this section, the procedure of determining the critical
nondimensional dynamic pressure under the presence of thermal
loading is presented. Equation (21) can be reduced for the solution of
the linear (prebuckling and preflutter) problem to the following
equation:

�M�f �Wtg � �G�f _Wtg � ��K� � �KT � � 
�Aa� � �N1�s�fWtg � 0

(29)

applying new notation for the bending degree of freedom by
combining the shear and bending degrees of freedom as

fWBg �
�
Wb

W�

�
(30)

Neglecting the in-plane and shear inertia terms will not bring
significant error, because their natural frequencies are usually two to
three orders of magnitude higher than the bending frequencies[30].
Separating Eq. (29) into membrane and transverse directions results
in the following transverse dynamic equation:

�MB�f �WBgt � �G�f _WBgt � ��KB� � �KTB� � 
�AaB� � �N1nmB�s
� �KBm��Km��1�KmB��fWBgt � 0 (31)

Note that the terms related to �N2�, �N1n�� and �N1mB� are dropped
because they depend on fWBg, which is essentially zero before
buckling or flutter, whereas �N1nmB�s term are kept because they
depend on fWmg, which might have nonzero values, depending on
the in-plane boundary conditions.

Now assume the deflection function of the transverse displace-
ment fWBgt to be in the form of

fWBgt � �cf�Bge�t (32)

where�� �� i! is the complex panel motion parameter (� is the
damping ratio and! is the frequency), �c is the amplitude of vibration,
and f�Bg is the mode shape.

Substituting Eq. (32) into Eq. (31), the generalized eigenvalue
problem can be obtained as

�c����MB� � � �KB��f�Bge�t � f0g (33)

where �GB� � !oga�MB�, and � is the nondimensional eigenvalue
given by

����2 � !oga� (34)

and

� �KB� � �KB� � �KTB� � 
�AaB� � �N1nmB�s � �KBm��Km��1�KmB�
(35)

From Eq. (33), we can write the generalized eigenvalue problem:

����MB� � � �KB��f�Bg � f0g (36)

where � is the eigenvalue and �B is the mode shape, with the
characteristic equation written as

j � ��MB� � � �KB�j � f0g (37)

Given that the values of � are real for all values of 
 below the
critical value, an iterative solution can be used to determine the
critical nondimensional dynamic pressure 
cr.

Limit-Cycle Amplitude

In this section, the harmonic limit-cycle amplitude will be
determined for a fluttering functionally graded material plate at
temperatures less than the buckling temperature (fWBgs � 0).
Following the same procedure outlined in the previous section, with
the only difference being that nonlinear stiffness terms that depend
on the transverse dynamic displacement (fWBgt) will be included to
end up with the following equation:

MB 0

0 0

� ��
�WB

�Wm

�
t

� GB 0

0 0

� ��
_WB

_Wm

�
t

�
�

KB KBm
KmB Km

� �

� KTB 0

0 0

� �
� 
 AaB 0

0 0

� �
� N1nmB 0

0 0

� �
s

��
WB

Wm

�
t

�
�
1

2

N1B N1Bm
N1mB 0

� �
t

� 1

3

N2B 0

0 0

� �
t

��
WB

Wm

�
t

� 0

(38)

Separating the membrane displacement equation and the
transverse displacement equation from Eq. (38),

�MB�f �WBgt � �G�f _WBgt � ��KB� � �KTB� � 
�AaB�
� �N1nmB�s�fWBgt � �12�N1B�t � 1

3
�N2B�t�fWBgt � ��KBm�

� 1
2
�N1Bm�t�fWmgt � 0 (39)

�KmB�fWBgt � �Km�fWmgt � 1
2
�N1mB�tfWBgt � 0 (40)

Therefore, the in-plane displacement vector fWmgt can be
expressed in terms of the bending displacement vector fWBgt as

fWmgt ����Km��1�KmB� � 1
2
�Km��1�N1mB�t�fWBgt (41)

Substituting Eq. (41) into Eq. (39),

�MB�f �WBgt � �GB�f _WBgt � ��KB� � �KTB� � 
�AaB� � �N1nmB�s
� �KBm��Km��1�KmB��fWBgt � �12�N1B�t
� 1

2
�KBm��Km��1�N1mB�t � 1

2
�N1Bm�t�Km��1�KmB��fWBgt

� �1
3
�N2B�t � 1

4
�N1Bm�t�Km��1�N1mB�t�fWBgt � 0 (42)

A procedure similar to those described earlier can be used towrite the
equation of motion in the form

�c����MB� � � �KB��f�Bge�t � f0g (43)

where

� �KB� � �KB� � �KTB� � 
�AaB� � �N1nmB�s � �KBm��Km��1�KmB�
� 1

2
�N1B�t � 1

2
�KBm��Km��1�N1mB�t � 1

2
�N1Bm�t�Km��1�KmB�

� 1
3
�N2B�t � 1

4
�N1Bm�t�Km��1�N1mB�t (44)

Because the nonlinear stiffness terms of the preceding equation
depend on the amplitude of the vibration, an iterative scheme should

1614 IBRAHIM, TAWFIK, AND AL-AJMI



be used. The following algorithm outlines the steps used in the
iterative procedure [34]:

1) Normalize the eigenvector f�Bg obtained at the flutter point
using the maximum displacement.

2) Select a value for the amplitude �c.
3) Evaluate the linear and nonlinear stiffness terms.
4) Change the value of the nondimensional aerodynamic pressure


.
5) Solve the eigenvalue problem for �.
6) If coalescence occurs, proceed, else go to step 4.
7) Check the differences between the obtained eigenvector and the

initial one, if small, proceed, else normalize the eigenvector as
described in step 1 and go to step 3.

8) The obtained dynamic pressure corresponds to the initially
given amplitude.

9) Go to step 2.
It should be noted that the aforementioned procedure is valid only

for the case when panel flutter occurs but the plate is not buckled or
when the dynamic pressure is high enough that the buckled plate
becomes flat again, which does not cover the region of chaotic
vibration.

Numerical Results and Discussions

In this section, the effect of the volume fraction exponent n and
different boundary conditions on the static and dynamic response
will be demonstrated. Numerical analyses for the thermal
postbuckling and nonlinear flutter of a functionally graded material
with temperature-dependent material properties are performed using
the nonlinear finite element. A uniform 6 	 6 finite element mesh of
nine-node elements are employed. The reduced-order technique is
used for integrating terms related to the transverse shear to avoid
shear locking.

Aerothermal Buckling Analysis

Thermal buckling and postbuckling analysis with and without
aerodynamic loading and with uniform temperature increase are
carried out for an FGM panel that is a mixture of nickel and silicon
nitride (Si3N4) to figure out the effect of the volume fraction
exponent n, the dynamic pressure, and the different boundary
conditions on the buckling characteristics of the FGM panel. The
geometry of the plate is chosen to be 0:38 	 0:305 	 0:002 m. The
plate edge supports are immovable in the in-plane direction. The
material properties are assumed to be temperature-dependent
according to the following relation [29]:

P� Po�P�1T�1 � 1� P1T � P2T
2 � P3T

3� (45)

The coefficientsPo,P�1,P1,P2, andP3 for Young’s modulusE; the
Poisson ratio 	; and the thermal expansion coefficient � of nickel and
silicon nitride are given in Table 1. Uniform temperature change was
applied to the plate.

Figure 2 illustrates the effect of the volume fraction exponent on
the buckling characteristics of a clamped FGMpanel. It is seen in the
figure that decreasing the volume fraction exponent results in a
higher buckling temperature and lower postbuckling deflection,
because the Si3N4 volume fraction increases with decreasing the
volume fraction exponent, which in turn leads to lower thermal

expansion coefficient and higher modulus of elasticity than that of
the nickel. It is also seen that the responses that correspond to
properties intermediate to those of the metal and the ceramic lie
between those of the metal and ceramic, which is consistent with
what is mentioned by Reddy [20].

As seen in Fig. 3 for functionally graded material panels with
simply supported edges, there is no buckling phenomenon, because
any small temperature rise results in a prompt transverse deflection of
the panel, due to structural asymmetry about the middle plane of the
FGM panel that makes all simply supported FGM panels lose their
buckling phenomena.

Figure 4 illustrates the effect of changing the value of the dynamic
pressure on the buckling temperature and postbuckling deflection of
the nickel/silicon-nitride FGM clamped panel with the volume
fraction exponent n equals one (n� 1). D11 is evaluated at Tref and
n� 1. It is seen clearly that the presence of the airflow increases the
stiffness of the panel through the aerodynamic stiffness matrix,

Table 1 Temperature-dependence coefficients for silicon nitride and nickel [29]

Properties Material P�1 P0 P1 P2 P3

E, MPa Si3N4 0 348.43e9 �3:07e � 4 2:2e � 7 �8:9e � 11
Nickel 0 223.95e9 �2:79e � 4 3:9e � 9 0

	 Si3N4 0 0.24 0 0 0
Nickel 0 0.31 0 0 0

� Si3N4 0 5:8723e � 6 9:09e � 4 0 0
Nickel 0 9:9209e � 6 8:71e � 4 0 0

�, kg=m3 Si3N4 2370
Nickel 8900

Fig. 2 Postbuckling deflection for a clamped FGMpanel with different
volume fraction exponents n.

Fig. 3 Postbuckling deflection for a simply supported FGM panel with
different volume fraction exponents n.
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which results in a higher buckling temperature and a lower
postbuckling deflection; that is, it is conservative to neglect the
presence of the air when performing thermal buckling analysis.

Although the ceramic panel response seems to be superior to that
of the FGM panel, using the ceramic panel results in a structural
integrity problem, due to the brittleness of the ceramic. So it is
worthwhile noting that increasing the ceramic volume fraction is
bounded by structural integrity aspects.

Free Vibration

The vibration characteristics of a nickel/silicon-nitride FGM
clamped panel with different volume fraction exponents n are
studied. The material properties, temperature distribution, and
dimensions of the plate are the same as those used in the previous
section.

Figure 5 illustrates the effect of temperature increase and the
volume fraction exponent on the fundamental frequency. It is seen in
the figure that for all values of n, the frequency decreases with
temperature, due the decreasing stiffness in the prebuckling region,
whereas after buckling, the frequency increases with temperature as
the plate stiffness increases, due to the addition of the nonlinear
terms. It is also seen that increasing the ceramic volume fraction
through decreasing the volume fraction exponent results in a higher
fundamental frequency in both of the prebuckling and postbuckling
regions, and this is due to the lower mass density of the ceramic than
that of themetal. It is seen in the previous section that the ceramic has
lower postbuckling deflection compared with that of the metal,
which in turn results in a lower stiffness in the postbuckling region
(i.e., lower fundamental frequency). But this is not the case according
to Fig. 5, because the mass density of the ceramic is almost one-third

that of the metal, which suppresses the effect of the lower
postbuckling deflection of the ceramic.

It should be noted that the ceramic natural frequencies may not be
favorable regarding the response of the FGM panel to acoustic
loading, due to its higher fundamental frequencies. So it is going to
be a matter of a tradeoff between the thermal response and the
acoustic response.

Predicting Panel Flutter Boundaries

In this section, the stability boundaries of an FGM panel with
clamped edges and with different volume fraction exponents n will
be studied. The results of the combined loading stability boundaries
were obtained by two different methods. To obtain the flutter
boundary, the dynamic pressure is increased at a certain temperature
until the coalescence of two eigenmodes (i.e., until flutter occurs). To
have the thermal buckling boundary, the critical buckling
temperature is calculated with dynamic pressure as a parameter.

An FGM panel under the effect of thermal and aerodynamic
loading is presented in Fig. 6 in terms of the critical temperature
boundary and linear flutter boundary. D11 is evaluated at Tref and
n�1 (i.e., D11 is evaluated using the nickel properties at room
temperature). The area of the graph is divided into three regions: the
flat-panel region, in which the panel is stable (i.e., neither buckling
nor panel flutter occurred); the buckled region, in which the thermal
stresses overcome the panel stiffness and aerodynamic stiffness,
and the panel undergoes static instability under in-plane thermal
loading; and the third region is the flutter region, in which the panel
undergoes dynamic instability under the influence of aerodynamic
pressure. Thus, the wider the flat-panel region, the more stable the
panel. It is also seen in Fig. 6 that decreasing the volume fraction
exponent n results in a wider flat-panel region and, in turn, a more
stable panel.

Limit-Cycle Amplitude

In this section, the limit-cycle amplitude will be determined for a
fluttering functionally gradedmaterial plate at temperatures less than
the buckling temperature (fWbgs � 0), illustrating the effect of the
volume fraction exponent on the nonlinear FGM panel flutter.

Figure 7 presents the variation of the limit-cycle amplitude of a
clamped FGM panel with the variation of both the nondimensional
dynamic pressure and the volume fraction exponent at a 6�C
temperature increase.D11 is evaluated at Tref and n�1. It is seen in
the figure that the limit-cycle amplitude increases with increasing
both the volume fraction exponent and the dynamic pressure. Also, it
is seen that the response of the FGM plate is intermediate to both of
the ceramic and the metal.

Figure 8 presents a full map of the variation of both the limit-cycle
amplitude and the postbuckling deflectionwith the dynamic pressure
for different values of the temperature increase, illustrating the
distinction between the static and dynamic regions. The volume

Fig. 4 Effect of the different values of the dynamic pressure on the
buckling characteristics of a clamped FGM panel with n� 1.

Fig. 5 Natural frequencies in the prebuckled and postbuckled regions
for different volume fraction exponents n.

Fig. 6 The effectiveness of the volume fraction exponent n on the
stability boundaries of an FGM clamped panel.
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fraction exponent in this figure was chosen to equal one (n� 1), and
D11 is evaluated at Tref and n� 1.

Conclusions

An efficient finite element formulation was presented for the
analysis of supersonic nonlinear panel flutter and thermal buckling
characteristics of an FGM panel made of nickel and silicon nitride.
Shear deformable plate theory based on temperature-dependent
material properties and von Kármán moderately large deflection was
considered in the formulation. The material properties were assumed
to vary the through-the-thickness direction based on a simple power
law distribution. The aerodynamic forces were modeled using the
quasi-steady first-order piston theory. An approach based on thermal
strain being a cumulative physical quantity was adopted to take into
account the temperature dependency of material properties.

The effectiveness of the volume fraction exponent and the
boundary conditions on thermal buckling, fundamental frequency,
and nonlinear panel flutter characteristics of the FGM panel was
studied. The results showed that the presence of the silicon nitride
with the nickel enhances the buckling characteristics of the panel
through increasing the buckling temperature and decreasing the
postbuckling deflection. Functionally graded material panels with
simply supported edges were found to have no distinguished
buckling phenomena, because any small temperature rise results in a
prompt transverse deflection of the panel, due to structural
asymmetry about the middle plane. For a given temperature, it was
also found that decreasing the volume fraction exponent enhances
flutter characteristics through increasing the critical dynamic
pressure. The presence of aerodynamic flow results in higher

buckling temperature and lower postbuckling deflection (i.e., results
in a stiffer panel). It is found that the limit-cycle amplitude increases
with increasing both the volume fraction exponent and the dynamic
pressure.
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